

Welcome to Keg-Storage

Documentation:

	Backends
	Azure Block Blob

	Local Filesystem

	S3 Backend

	SFTP

	Utilities

	Configuration
	Storage Profiles

	Usage
	S3

	StorageOperations wrapper/mixin

Backends

Supported Backends:

	Azure Block Blob

	Local Filesystem

	S3 Backend

	SFTP

	Utilities

Azure Block Blob

	
class keg_storage.backends.azure.AzureStorage(account: Optional[str] = None, key: Optional[str] = None, bucket: Optional[str] = None, sas_container_url: Optional[str] = None, sas_blob_url: Optional[str] = None, chunk_size=5242880, name: str = 'azure')

	
	
copy(path: str, new_path: str)

	Copy the remote file specified by path to new_path.

	
create_download_url(path: str, expire: Union[arrow.arrow.Arrow, datetime.datetime])

	Create an SAS URL that can be used to download a blob without any additional authentication.
This url may be accessed directly to download the blob:

requests.get(url)

	
create_upload_url(path: str, expire: Union[arrow.arrow.Arrow, datetime.datetime])

	Create an SAS URL that can be used to upload a blob without any additional authentication.
This url can be used in following way to authenticate a client and upload to the
pre-specified path:

client = BlobClient.from_blob_url(url)
client.upload_blob(data)

	
delete(path: str)

	Delete the remote file specified by path.

	
download(path: str, file_obj: IO, *, progress_callback: Optional[Callable[[int], None]] = None)

	Copies a remote file at path to a file-like object file_obj.

If desired, a progress callback can be supplied. The function should accept an int
parameter, which will be the number of bytes downloaded so far.

	
get(path: str, dest: str) → None

	Copies a remote file at path to the dest path given on the local filesystem.

	
link_to(path: str, operation: Union[keg_storage.backends.base.ShareLinkOperation, str], expire: Union[arrow.arrow.Arrow, datetime.datetime], output_path: Optional[str] = None, content_type: Optional[str] = None) → str

	Returns a URL allowing direct the specified operations to be performed on the given path

	
list(path: str) → List[keg_storage.backends.base.ListEntry]

	Returns a list of ListEntry`s representing files available under the directory or prefix
given in `path.

	
open(path: str, mode: Union[keg_storage.backends.base.FileMode, str]) → keg_storage.backends.azure.AzureFile

	Returns a instance of RemoteFile for the given path that can be used for
reading and/or writing depending on the mode given.

	
put(path: str, dest: str) → None

	Copies a local file at path to a remote file at dest.

	
upload(file_obj: IO, path: str, *, progress_callback: Optional[Callable[[int], None]] = None)

	Copies the contents of a file-like object file_obj to a remote file at path

If desired, a progress callback can be supplied. The function should accept an int
parameter, which will be the number of bytes uploaded so far.

	
class keg_storage.backends.azure.AzureReader(mode: keg_storage.backends.base.FileMode, blob_client: azure.storage.blob._blob_client.BlobClient, chunk_size=5242880)

	The Azure reader uses byte ranged API calls to fill a local buffer to avoid lots of API overhead
for small read sizes.

	
read(size: int) → bytes

	Read and return up to size bytes from the remote file. If the end of the file is reached
this should return an empty bytes string.

	
class keg_storage.backends.azure.AzureWriter(mode: keg_storage.backends.base.FileMode, blob_client: azure.storage.blob._blob_client.BlobClient, chunk_size=5242880)

	We are using Azure Block Blobs for all operations. The process for writing them is substantially
similar to that of S3 with a couple of differences.

	We generate the IDs for the blocks

	
	There is no separate call to instantiate the upload. The first call to put_block will create

	the blob.

	
close()

	Cleanup and deallocate any held resources. This method may be called multiple times on a
single instance. If the file was already closed, this method should do nothing.

	
write(data: bytes) → None

	Write the data buffer to the remote file.

	
class keg_storage.backends.azure.AzureFile(mode: keg_storage.backends.base.FileMode, blob_client: azure.storage.blob._blob_client.BlobClient, chunk_size=5242880)

	Base class for Azure file interface. Since read and write operations are very different and
integrating the two would introduce a lot of complexity there are distinct subclasses for files
opened for reading and writing.

Local Filesystem

	
class keg_storage.backends.filesystem.LocalFSStorage(root: Union[str, pathlib.Path], linked_endpoint: Optional[str] = None, secret_key: Optional[bytes] = None, name: str = None)

	
	
copy(path: str, new_path: str)

	Copy the remote file specified by path to new_path.

	
create_link_token(*, path: str, operation: Union[keg_storage.backends.base.ShareLinkOperation, str], expire: Union[arrow.arrow.Arrow, datetime.datetime])

	Create a signed JWT authorizing the user to perform the specified operations

	
delete(path: str)

	Delete the remote file specified by path.

	
deserialize_link_token(token: str) → keg_storage.backends.base.InternalLinkTokenData

	Verify a JWT and extract the path and allowed operations

	
download(path: str, file_obj: IO, *, progress_callback: Optional[Callable[[int], None]] = None)

	Copies a remote file at path to a file-like object file_obj.

If desired, a progress callback can be supplied. The function should accept an int
parameter, which will be the number of bytes downloaded so far.

	
get(path: str, dest: str) → None

	Copies a remote file at path to the dest path given on the local filesystem.

	
link_to(path: str, operation: Union[keg_storage.backends.base.ShareLinkOperation, str], expire: Union[arrow.arrow.Arrow, datetime.datetime], output_path: Optional[str] = None, content_type: Optional[str] = None) → str

	Create a URL pointing to the given linked_endpoint containing a JWT authorizing the user
user to perform the given operations.

This is currently only implemented for flask based apps but you may override this method in
your own subclass to support other frameworks.

To use this method you must provide secret_key and linked_endpoint to the constructor.

Note: content_type parameter is ignored for this backend.

	
list(path: str) → List[keg_storage.backends.base.ListEntry]

	Returns a list of ListEntry`s representing files available under the directory or prefix
given in `path.

	
open(path: str, mode: Union[keg_storage.backends.base.FileMode, str])

	Returns a instance of RemoteFile for the given path that can be used for
reading and/or writing depending on the mode given.

	
put(path: str, dest: str) → None

	Copies a local file at path to a remote file at dest.

	
upload(file_obj: IO, path: str, *, progress_callback: Optional[Callable[[int], None]] = None)

	Copies the contents of a file-like object file_obj to a remote file at path

If desired, a progress callback can be supplied. The function should accept an int
parameter, which will be the number of bytes uploaded so far.

	
class keg_storage.backends.filesystem.LocalFSFile(path: pathlib.Path, mode: keg_storage.backends.base.FileMode)

	
	
close()

	Cleanup and deallocate any held resources. This method may be called multiple times on a
single instance. If the file was already closed, this method should do nothing.

	
read(size: int) → bytes

	Read and return up to size bytes from the remote file. If the end of the file is reached
this should return an empty bytes string.

	
write(data: bytes) → None

	Write the data buffer to the remote file.

S3 Backend

	
class keg_storage.backends.s3.S3Storage(bucket, aws_region, aws_access_key_id=None, aws_secret_access_key=None, aws_profile=None, name='s3')

	
	
copy(current_file, new_file)

	Copy the remote file specified by path to new_path.

	
delete(path)

	Delete the remote file specified by path.

	
download(path: str, file_obj: IO, *, progress_callback: Optional[Callable[[int], None]] = None)

	Copies a remote file at path to a file-like object file_obj.

If desired, a progress callback can be supplied. The function should accept an int
parameter, which will be the number of bytes downloaded so far.

	
get(path: str, dest: str) → None

	Copies a remote file at path to the dest path given on the local filesystem.

	
link_to(path: str, operation: Union[keg_storage.backends.base.ShareLinkOperation, str], expire: Union[arrow.arrow.Arrow, datetime.datetime], output_path: Optional[str] = None, content_type: Optional[str] = None) → str

	Returns a URL allowing direct the specified operations to be performed on the given path

	
list(path)

	Returns a list of ListEntry`s representing files available under the directory or prefix
given in `path.

	
open(path: str, mode: Union[keg_storage.backends.base.FileMode, str])

	Returns a instance of RemoteFile for the given path that can be used for
reading and/or writing depending on the mode given.

	
put(path: str, dest: str) → None

	Copies a local file at path to a remote file at dest.

	
upload(file_obj: IO, path: str, *, progress_callback: Optional[Callable[[int], None]] = None)

	Copies the contents of a file-like object file_obj to a remote file at path

If desired, a progress callback can be supplied. The function should accept an int
parameter, which will be the number of bytes uploaded so far.

	
class keg_storage.backends.s3.S3Reader(bucket, filename, client)

	
	
close()

	Cleanup and deallocate any held resources. This method may be called multiple times on a
single instance. If the file was already closed, this method should do nothing.

	
read(size: int)

	Read and return up to size bytes from the remote file. If the end of the file is reached
this should return an empty bytes string.

	
class keg_storage.backends.s3.S3Writer(bucket, filename, client, chunk_size=10485760)

	Writes to S3 are quite a bit more complicated than reads. To support large files, we cannot
write in a single operation and the API does not encourage streaming writes so we make use of
the multipart API methods.

	The process can be summarized as:

	
	Create a multipart upload and get an upload key to use with subsequent calls.

	Upload “parts” of the file using the upload key and get back an ID for each part.

	Combine the parts using the upload key and all the part IDs from the above steps.

The chunked nature of the uploads should be mostly invisible to the caller since S3Writer
maintains a local buffer.

Because creating a multipart upload itself has an actual cost and there is no guarantee that
anything will actually be written, we initialize the multipart upload lazily.

	
abort()

	Use if for some reason you want to discard all the data written and not create an S3 object

	
close()

	Cleanup and deallocate any held resources. This method may be called multiple times on a
single instance. If the file was already closed, this method should do nothing.

	
write(data: bytes)

	Write the data buffer to the remote file.

	
class keg_storage.backends.s3.S3FileBase(mode, bucket, filename, client)

	Read and write operations for S3 are very different so individual subclasses are used for each.
Read+Write mode is not available for this backend.

SFTP

	
class keg_storage.backends.sftp.SFTPStorage(host, username, key_filename, known_hosts_fpath, port=22, allow_agent=False, look_for_keys=False, linked_endpoint=None, secret_key=None, name='sftp')

	
	
copy(path: str, new_path: str)

	Copy the remote file specified by path to new_path.

	
create_link_token(*, path: str, operation: Union[keg_storage.backends.base.ShareLinkOperation, str], expire: Union[arrow.arrow.Arrow, datetime.datetime])

	Create a signed JWT authorizing the user to perform the specified operations

	
delete(path: str)

	Delete the remote file specified by path.

	
deserialize_link_token(token: str) → keg_storage.backends.base.InternalLinkTokenData

	Verify a JWT and extract the path and allowed operations

	
download(path: str, file_obj: IO, *, progress_callback: Optional[Callable[[int], None]] = None)

	Copies a remote file at path to a file-like object file_obj.

If desired, a progress callback can be supplied. The function should accept an int
parameter, which will be the number of bytes downloaded so far.

	
get(path: str, dest: str) → None

	Copies a remote file at path to the dest path given on the local filesystem.

	
link_to(path: str, operation: Union[keg_storage.backends.base.ShareLinkOperation, str], expire: Union[arrow.arrow.Arrow, datetime.datetime], output_path: Optional[str] = None, content_type: Optional[str] = None) → str

	Create a URL pointing to the given linked_endpoint containing a JWT authorizing the user
user to perform the given operations.

This is currently only implemented for flask based apps but you may override this method in
your own subclass to support other frameworks.

To use this method you must provide secret_key and linked_endpoint to the constructor.

Note: content_type parameter is ignored for this backend.

	
list(path: str)

	Returns a list of ListEntry`s representing files available under the directory or prefix
given in `path.

	
open(path: str, mode: Union[keg_storage.backends.base.FileMode, str])

	Returns a instance of RemoteFile for the given path that can be used for
reading and/or writing depending on the mode given.

	
put(path: str, dest: str) → None

	Copies a local file at path to a remote file at dest.

	
upload(file_obj: IO, path: str, *, progress_callback: Optional[Callable[[int], None]] = None)

	Copies the contents of a file-like object file_obj to a remote file at path

If desired, a progress callback can be supplied. The function should accept an int
parameter, which will be the number of bytes uploaded so far.

	
class keg_storage.backends.sftp.SFTPRemoteFile(mode, path, client)

	
	
close()

	Cleanup and deallocate any held resources. This method may be called multiple times on a
single instance. If the file was already closed, this method should do nothing.

	
read(size: int)

	Read and return up to size bytes from the remote file. If the end of the file is reached
this should return an empty bytes string.

	
write(data: bytes)

	Write the data buffer to the remote file.

Utilities

	
class keg_storage.backends.base.FileMode

	An enumeration.

	
class keg_storage.backends.base.ShareLinkOperation

	An enumeration.

	
class keg_storage.backends.base.InternalLinkTokenData(path, operations)

	
	
operations

	Alias for field number 1

	
path

	Alias for field number 0

	
class keg_storage.backends.base.InternalLinksStorageBackend(*, linked_endpoint: Optional[str], secret_key: Optional[bytes], name: str)

	Base class for storage backends that do not have their own direct method of creating
download/upload/deletion URLs. To use the link_to feature for such backends, the app must
provide it’s own endpoint to handle the requests.
See plugin.LinkViewMixin for a base implementation of such an endpoint.

	
create_link_token(*, path: str, operation: Union[keg_storage.backends.base.ShareLinkOperation, str], expire: Union[arrow.arrow.Arrow, datetime.datetime])

	Create a signed JWT authorizing the user to perform the specified operations

	
deserialize_link_token(token: str) → keg_storage.backends.base.InternalLinkTokenData

	Verify a JWT and extract the path and allowed operations

	
link_to(path: str, operation: Union[keg_storage.backends.base.ShareLinkOperation, str], expire: Union[arrow.arrow.Arrow, datetime.datetime], output_path: Optional[str] = None, content_type: Optional[str] = None) → str

	Create a URL pointing to the given linked_endpoint containing a JWT authorizing the user
user to perform the given operations.

This is currently only implemented for flask based apps but you may override this method in
your own subclass to support other frameworks.

To use this method you must provide secret_key and linked_endpoint to the constructor.

Note: content_type parameter is ignored for this backend.

Configuration

Storage Profiles

Configure storage backends using the KEG_STORAGE_PROFILES setting. This should be a list of
2-tuples, matching a keg_storage.backends.StorageBackend with a dict of initialization
arguments.

For an example, refer to keg_storage_ta.config.DefaultProfile.

Usage

S3

Pre-signed URLs

The link_to function for the S3 backend creates a temporary, pre-signed URL that can be used for uploads or downloads.

Uploads

	PUT request required

	
	Must have a header of content-type: application/octet-stream set

	
	If header doesn’t match the expected value, you will get a 400 error

	
	Make sure you have permissions to the key you are creating

	
	The SDK will happily generate pre-signed URLs that are not available to the generating user

	Body is file contents

JavaScript example:

const resp = await axios.default.put(storageUrl, file, {
 headers: { "content-type": "application/octet-stream" },
});

StorageOperations wrapper/mixin

	
class keg_storage.StorageOperations

	Ops wrapper for storage operations that will typically occur in a flask app.

Assumes the storage plugin is being used and configured with storage profiles.

Class properties storage_location and storage_profile may be assigned defaults in
a subclass direct any of the operations to that folder path or configured interface.
storage_location is expected to be an Enum.

Each method will also take storage_location and storage_profile, so they can be
provided directly for one-offs. So, this class can be used directly or as a mixin.

	
classmethod storage_delete_file(filename, storage_location=None, storage_profile=None)

	Remove file data from storage.

	
classmethod storage_download_file(filename, storage_location=None, storage_profile=None)

	Pull file data from storage, return BytesIO stream.

	
classmethod storage_duplicate_file(filename, storage_location=None, storage_profile=None)

	Copy file data already in storage to a new file object. Generates the new
filename using a UUID.

	
static storage_generate_filename(filename)

	Generate a UUID-based filename for an object, typically for upload to prevent
path collisions. If the provided original filename has an extension, honor that
extension.

	
classmethod storage_get_download_link(filename, expire_minutes, storage_location=None, storage_profile=None, **kwargs)

	Generate an expiring download link to pass to client for a stored object.

	
classmethod storage_get_profile(storage_profile=None)

	Get configured storage interface. Either specify which interface via the
storage_profile kwarg, or it will fall back to the first defined profile.

	
classmethod storage_get_upload_link(filename, expire_minutes, storage_location=None, storage_profile=None)

	Generate an expiring upload link to pass to client for data to be stored.

	
static storage_prefix_path(location, filename)

	Join the location path with the filename to get the full object path

	
classmethod storage_upload_file(file_object, filename, preserve_filename=False, storage_location=None, storage_profile=None)

	Push file data to storage. A UUID-based filename will be generated to prevent
path collisions unless preserve_filename is set.

	
classmethod storage_upload_form_file(form_field: str, storage_location=None, storage_profile=None)

	Shortcut to push file data from posted form to storage.

Index

 A
 | C
 | D
 | F
 | G
 | I
 | L
 | O
 | P
 | R
 | S
 | U
 | W

A

 	
 	abort() (keg_storage.backends.s3.S3Writer method)

 	AzureFile (class in keg_storage.backends.azure)

 	
 	AzureReader (class in keg_storage.backends.azure)

 	AzureStorage (class in keg_storage.backends.azure)

 	AzureWriter (class in keg_storage.backends.azure)

C

 	
 	close() (keg_storage.backends.azure.AzureWriter method)

 	(keg_storage.backends.filesystem.LocalFSFile method)

 	(keg_storage.backends.s3.S3Reader method)

 	(keg_storage.backends.s3.S3Writer method)

 	(keg_storage.backends.sftp.SFTPRemoteFile method)

 	copy() (keg_storage.backends.azure.AzureStorage method)

 	(keg_storage.backends.filesystem.LocalFSStorage method)

 	(keg_storage.backends.s3.S3Storage method)

 	(keg_storage.backends.sftp.SFTPStorage method)

 	
 	create_download_url() (keg_storage.backends.azure.AzureStorage method)

 	create_link_token() (keg_storage.backends.base.InternalLinksStorageBackend method)

 	(keg_storage.backends.filesystem.LocalFSStorage method)

 	(keg_storage.backends.sftp.SFTPStorage method)

 	create_upload_url() (keg_storage.backends.azure.AzureStorage method)

D

 	
 	delete() (keg_storage.backends.azure.AzureStorage method)

 	(keg_storage.backends.filesystem.LocalFSStorage method)

 	(keg_storage.backends.s3.S3Storage method)

 	(keg_storage.backends.sftp.SFTPStorage method)

 	deserialize_link_token() (keg_storage.backends.base.InternalLinksStorageBackend method)

 	(keg_storage.backends.filesystem.LocalFSStorage method)

 	(keg_storage.backends.sftp.SFTPStorage method)

 	
 	download() (keg_storage.backends.azure.AzureStorage method)

 	(keg_storage.backends.filesystem.LocalFSStorage method)

 	(keg_storage.backends.s3.S3Storage method)

 	(keg_storage.backends.sftp.SFTPStorage method)

F

 	
 	FileMode (class in keg_storage.backends.base)

G

 	
 	get() (keg_storage.backends.azure.AzureStorage method)

 	(keg_storage.backends.filesystem.LocalFSStorage method)

 	(keg_storage.backends.s3.S3Storage method)

 	(keg_storage.backends.sftp.SFTPStorage method)

I

 	
 	InternalLinksStorageBackend (class in keg_storage.backends.base)

 	
 	InternalLinkTokenData (class in keg_storage.backends.base)

L

 	
 	link_to() (keg_storage.backends.azure.AzureStorage method)

 	(keg_storage.backends.base.InternalLinksStorageBackend method)

 	(keg_storage.backends.filesystem.LocalFSStorage method)

 	(keg_storage.backends.s3.S3Storage method)

 	(keg_storage.backends.sftp.SFTPStorage method)

 	
 	list() (keg_storage.backends.azure.AzureStorage method)

 	(keg_storage.backends.filesystem.LocalFSStorage method)

 	(keg_storage.backends.s3.S3Storage method)

 	(keg_storage.backends.sftp.SFTPStorage method)

 	LocalFSFile (class in keg_storage.backends.filesystem)

 	LocalFSStorage (class in keg_storage.backends.filesystem)

O

 	
 	open() (keg_storage.backends.azure.AzureStorage method)

 	(keg_storage.backends.filesystem.LocalFSStorage method)

 	(keg_storage.backends.s3.S3Storage method)

 	(keg_storage.backends.sftp.SFTPStorage method)

 	
 	operations (keg_storage.backends.base.InternalLinkTokenData attribute)

P

 	
 	path (keg_storage.backends.base.InternalLinkTokenData attribute)

 	put() (keg_storage.backends.azure.AzureStorage method)

 	(keg_storage.backends.filesystem.LocalFSStorage method)

 	(keg_storage.backends.s3.S3Storage method)

 	(keg_storage.backends.sftp.SFTPStorage method)

R

 	
 	read() (keg_storage.backends.azure.AzureReader method)

 	(keg_storage.backends.filesystem.LocalFSFile method)

 	(keg_storage.backends.s3.S3Reader method)

 	(keg_storage.backends.sftp.SFTPRemoteFile method)

S

 	
 	S3FileBase (class in keg_storage.backends.s3)

 	S3Reader (class in keg_storage.backends.s3)

 	S3Storage (class in keg_storage.backends.s3)

 	S3Writer (class in keg_storage.backends.s3)

 	SFTPRemoteFile (class in keg_storage.backends.sftp)

 	SFTPStorage (class in keg_storage.backends.sftp)

 	ShareLinkOperation (class in keg_storage.backends.base)

 	storage_delete_file() (keg_storage.StorageOperations class method)

 	storage_download_file() (keg_storage.StorageOperations class method)

 	
 	storage_duplicate_file() (keg_storage.StorageOperations class method)

 	storage_generate_filename() (keg_storage.StorageOperations static method)

 	storage_get_download_link() (keg_storage.StorageOperations class method)

 	storage_get_profile() (keg_storage.StorageOperations class method)

 	storage_get_upload_link() (keg_storage.StorageOperations class method)

 	storage_prefix_path() (keg_storage.StorageOperations static method)

 	storage_upload_file() (keg_storage.StorageOperations class method)

 	storage_upload_form_file() (keg_storage.StorageOperations class method)

 	StorageOperations (class in keg_storage)

U

 	
 	upload() (keg_storage.backends.azure.AzureStorage method)

 	(keg_storage.backends.filesystem.LocalFSStorage method)

 	(keg_storage.backends.s3.S3Storage method)

 	(keg_storage.backends.sftp.SFTPStorage method)

W

 	
 	write() (keg_storage.backends.azure.AzureWriter method)

 	(keg_storage.backends.filesystem.LocalFSFile method)

 	(keg_storage.backends.s3.S3Writer method)

 	(keg_storage.backends.sftp.SFTPRemoteFile method)

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Keg-Storage

 		
 Backends

 		
 Azure Block Blob

 		
 Local Filesystem

 		
 S3 Backend

 		
 SFTP

 		
 Utilities

 		
 Configuration

 		
 Storage Profiles

 		
 Usage

 		
 S3

 		
 Pre-signed URLs

 		
 StorageOperations wrapper/mixin

_static/comment-bright.png

_static/ajax-loader.gif

